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Abstract
We consider O(N)-symmetric potentials with a logarithmic singularity in the
second field derivative. This class includes BCS and Gross Neveu potentials.
Formally, the exact renormalization group equation for the Legendre transform
of these potentials seems to have ill-defined initial conditions. We show that the
renormalization group equation for the local potential has well-defined initial
conditions and that the logarithmic singularity is smoothed rapidly in the flow.
Our analysis also provides an efficient method for numerical studies.

PACS numbers: 05.10.Cc, 74.20.Fg, 11.10.Hi

1. Introduction

In quantum field theory and quantum statistical mechanics, bosonic O(N) models originate
naturally from microscopic fermionic models as the effective low-energy models for order
parameter fields, like Cooper pairs or spin operators. As such, they play a central role in
the analysis of symmetry-breaking phenomena. Technically, they arise via the introduction
of auxiliary boson fields φ coupling to composite fermion fields with a Gaussian integral
(Hubbard–Stratonovich transformation). The correlation function of the composite fermionic
‘order parameter fields’ can then be expressed as functions of the correlations of φ, and the
integration over the fermionic fields yields a new action G0(φ) for the bosonic fields φ. There
are situations where the resulting action G0 is not localized enough, so the fermionic degrees
of freedom need to be kept even at the lowest scales, but there is a large class of models where
studying G0 is justified at low enough energies.

On the mean-field level, a nonvanishing expectation value of the Hubbard–Stratonovich
field φ signals symmetry breaking. In the full theory, fluctuations need to be taken into account
(and can strongly change or even invalidate the mean-field result).

The functional renormalization group (RG) [1–5] is a very useful tool for studying such
fluctuation effects: it defines a flow of effective actions Gs, with initial condition given by the
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potential G0, as a function of a scale parameter s � 0. In the typical application, s is related
to some energy, length or temperature scale [6, 7] that labels which degrees of freedom are
incorporated. Here we have taken the convention that the energy scale is a decreasing function
of s (or the length scale is increasing in s). We remark in passing that the RG method is flexible
enough to allow for widely varying choices of s.

More and more fluctuation effects are incorporated as s increases, and the full generating
function for the correlations is obtained for s → ∞. The existence of this limit is not obvious.
Indeed, control over this limit can be considered the solution of the model, i.e. the construction
of a particular model of quantum field theory or statistical mechanics.

There are several different implementations of the RG idea [8–10], all of which are
equivalent on a general level, but each with their proper merits and drawbacks when doing
analysis and making approximations. The RG differential equation for the generating
functional �s for the one-particle irreducible (1PI) vertices of O(N) models has had success
in a wide range of applications, see [4] for a review.

It is important to note that the often-studied case of smooth initial potentials, e.g. φ4

potentials, does not really correspond to a model derived from integrating out the fermionic
degrees of freedom. In many examples, the second field derivative of the boson potential
contains a logarithmic singularity for small fields. The most prominent example is the BCS
theory of superconductivity [11], where the order parameter describes the superconducting
gap. The same logarithm in the second field derivative can be seen in the Gross Neveu model
[12] and is relevant in the study of mass generation and chiral symmetry breaking in the
two-dimensional situation, where the model is perturbatively ultraviolet renormalizable.

This singularity in the effective potential cannot be regarded as a physically irrelevant
detail because it implies the persistence of a symmetry-broken solution down to arbitrarily
small values of the interaction strength. Indeed, all the familiar formulas of BCS theory would
change if the potential were nonsingular. (Other features of the fermionic effective potential
are not well described by a φ4-type potential either, as discussed below.) In this paper, we
discuss the role of such initial singularities in the RG flow. Let W be the generating functional
of the connected correlation functions. Following [4] we set up the RG flow by multiplying
the integrand of the functional integral for W with a regularizing Gaussian exponential with
covariance cs = R−1

s to obtain a scale-dependent generating functional Ws. Here s is the
RG scale, which runs from zero to infinity, and Rs is a regulator function chosen such that
in the limit s → 0, Rs → ∞, so that all fluctuations are suppressed at the beginning, and
the generating function for the amputated correlation functions is equal to the initial action
G0. In the opposite limit s → ∞, Rs → 0, so that the regulator disappears and formally, the
full generating function for the correlations is recovered (as mentioned above, it is nontrivial
to show that this limit really exists). Taking the Legendre transform of the logarithm of the
partition function, subtracting the regulating Gaussian exponent and differentiating, we obtain
the 1PI flow equation of a modified Legendre transform [4]:

�̇s[φ] = 1

2
Tr

[
ċs

δ2�s

δφ2

(
11 + cs

δ2�s

δφ2

)−1
]

. (1)

In comparison with [4], equation (1) originates from a normalized partition function, that is, a
term 1

2 Tr ṘsR
−1
s is subtracted here. This functional equation is exact, but in most physically

interesting models, the functional φ �→ �s[φ] has to be approximated for a direct computation.
There are two common approximations for the functional �s[φ]. First, �s can be expanded

in powers of the fields φ and truncated at some finite even order. If the local potential of �s

contains logarithmic terms in φ, an expansion around φ = 0 is obviously not possible.
However, as discussed, the logarithm for small fields in the second field derivative generically
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ensures a nonvanishing mean-field solution φM.F.. By changing the expansion point to φM.F.,
one can avoid the logarithm in an expansion in φ − φM.F.. However, this expansion can then
converge at most for |φ| < |φM.F.|, which is very small for weak interactions. Even worse,
for the BCS model we find that the coefficient of (φ − φM.F.)

4 has a negative eigenvalue in
the radial mode. Therefore, requiring stability of the functional integral, a φ4 truncation is
not feasible in this case. This problem is not cured by including the six-point function or by a
naive separation of small and large fields. It is, of course, merely a problem of the expansion
in powers of φ−φM.F., since the potential is bounded below. We note in passing that potentials
obtained by the Hubbard–Stratonovich transformation and fermionic integration also do not
grow like |φ|4 at large |φ| but rather like |φ|2 since the logarithm of the fermionic determinant
grows only linearly in |φ| at large |φ|.

The other often-used approximation is a derivative or gradient expansion [9, 13–15].
While it is not yet clear under which circumstances such expansions are asymptotic [16],
they have been applied successfully to a variety of physical problems in a renormalization
context, see [4] and the references therein. A naive application of the derivative expansion
meets an ultraviolet problem for the case of fields φ originating from a Hubbard–Stratonovitch
transformation, because the fermion loops determining the action G0 vanish at large Matsubara
frequencies. Therefore, a time derivative term is never really there to smoothen the short-time
fluctuations, i.e. the propagator for φ has no decay at large frequencies. Ultraviolet divergences
are only prevented by the decay of the higher vertices of the initial action in these frequencies,
i.e. the decay of the vertices generated by the φ-dependent terms in δ2�s

δφ2 . When the initial
action is the result of an integration where the high-frequency modes are integrated over, e.g. in
a fermionic representation, this ultraviolet problem is absent. The fermionic integration over
high-frequency modes can be done by convergent perturbation theory [17]. A further problem
is that the status of (1) becomes unclear in the limit s → 0 if the second field derivative
of the initial interaction potential contains a singular term, such as δ2�0

δφ2 [φc] ∼ ln φ2
c , when

evaluated at a constant field φc. Certainly, if one tried to replace δ2�s

δφ2 by δ2�0
δφ2 in the inverse in

equation (1), one would end up with a singularity at some small, φc-dependent s.
In the present paper we show that this problem is not really there, due to the smoothing

properties of the RG flow, which become evident when regarding the flow of the connected,
amputated functions instead of the 1PI vertex functions. We show that the generating function
for the connected functions is smooth at any s > 0 and use this to give estimates on the
Legendre transform that imply smoothness of �s in φ for any positive s. We apply this in two
ways. First, we can overcome the problem of the seemingly ill-defined initial condition simply
by the semigroup property of the RG: performing the fluctuation integral with covariance cε

as a Gaussian convolution for Wε and respectively Gε, and then Legendre transforming, gives
a new, smooth, initial condition �ε for the generating function of the 1PI vertices. It turns
out that δ2�ε

δφ2 ∼ log cε, so that cε
δ2�ε

δφ2 vanishes as ε → 0, and hence there is no singularity
in the inverse in equation (1). Second, we use these estimates to show that the differential
equation for the 1PI vertices holds for any s > 0, and we give the asymptotic behavior of the
solution for small s > 0. As one would expect, the deviation from the initial condition �0

is nonuniform in φ, which explains the absence of the above-mentioned singularity: at any
s > 0, one can choose φ so small that �0[φ] is not a good approximation for �s[φ].

Thus, the physically important logarithmic singularities in the initial condition for the
potential do not present any conceptual problem for the functional RG, and our method
also provides a practical method to treat such initial conditions, also in the 1PI scheme.
For simplicity of presentation, we concentrate here on reduced O(N) models, that is, only
on the local potential. The field theoretical methods and the estimates we use generalize,
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however, to the full model: the smoothing property of the Gaussian convolution also holds for
infinite-dimensional Gaussian integrals, and the strong decay properties imposed by the RG
regulator function at the beginning of the flow justify perturbation theory. In particular, the
generalization to include the second order of a derivative expansion is straightforward.

Let φ = (φ1, . . . , φN) ∈ R
N be a constant field, that is, a vector with N components. For

H ∈ R
N let (φ,H) = ∑N

i=1 φiHi , and denote φ2 = (φ, φ). We consider a reduced O(N)

model with the generating function for the connected correlations:

Ws(G0,H) = ln
∫

dNφ

(2πs)N/2
exp

[
−φ2

2s
− G0(φ) + (φ,H)

]
. (2)

The external field H couples linearly to φ. The scale dependence cs = s11N with s ∈ [0,∞) is
already included in the definition. This particular choice of scale dependence is not essential
for the calculations; it is chosen for convenience only. The potential G0 is O(N)-symmetric,
so that it can be written as G0(φ) = V0(ρ) with ρ = 1

2φ2. We assume that V0 is smooth away
from ρ = 0 and that for large ρ, V ′

0(ρ) � const. > 0. For small ρ, we assume

V0(ρ) = V0(0) + v1ρ ln ρ + v2ρ + R(ρ). (3)

Here v1 > 0 and the remainder term R satisfies R(0) = R′(0) = 0, and there is a constant
K0 > 0 such that |R′′(ρ)| � K0ρ

−α with α < 1. With these assumptions, the function
exp(−G0(φ) + (H, φ)) is integrable uniformly in H, hence the limit s → ∞ of (2) exists by
the dominated convergence theorem.

An important example satisfying these hypotheses is the mean-field potential of the BCS
model. This is the case N = 2 and

V0(ρ) = ρ

g
−

∫
dE ν(E)

√
E2 + ρ, (4)

if the density of states ν(E) is regular at the Fermi level E = 0. Here −g is the coupling
constant in front of the Cooper pair interaction term. The logarithm in (3) is really there, i.e.
v1 > 0, if ν(0) �= 0.

For notational simplicity we have used a unit volume here. In general, the exponent is
given by 
V0, where 
 denotes the volume, which is taken to infinity in the thermodynamic
limit. In this limit, equation (4) becomes exact for the reduced BCS model [18]. In the
presence of 
, the factor |φ|N−1 in the integration measure, dNφ ∼ |φ|N−1d|φ| dN−1ω, where
dN−1ω is the integration measure of the (N − 1) dimensional sphere, is not relevant for the
following discussion, because all other parts of the exponent get multiplied by 
.

The effective potential �s(φ) = γs(φ) − φ2

2s
, where γs is the Legendre transform of Ws,

is again O(N)-symmetric and we write �s(φ) = Us(ρ) (recall that ρ = 1
2φ2). Denoting

differentiation with respect to the scale s by a dot and differentiation with respect to ρ by a
prime we obtain the RG equation

U̇s = 1

2

[
(N − 1)U ′

s

1 + sU ′
s

+
U ′

s + 2ρU ′′
s

1 + s[U ′
s + 2ρU ′′

s ]

]
(5)

for the effective (local) potential [4], which can also be derived by inserting constant
fields in equation (1). In this sense Us is the lowest order of a derivative expansion.
Formally, the initial condition is posed in the limit s → 0, where U0(ρ) = V0(ρ),
which seems to lead to the vanishing denominator problem discussed before because
U ′

0(ρ) = v1 ln ρ + v1 + v2 + O(ρ1−α) → −∞ as ρ → 0. Of course, Ws is convex by
Jensen’s inequality, and hence the Legendre transform cannot diverge at any finite ρ. In the
following we show the more specific statement that, due to the smoothing effects of the RG
transformation, the denominators are strictly positive, and we give sharp bounds for their
behavior as s → 0.
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2. The RG as a smoothing operator

We introduce the effective action

Gs(ξ) = − ln
∫

dNφ

(2πs)N/2
exp

[
−φ2

2s
− G0(φ + ξ)

]
(6)

such that Ws(G0,H) = ξ 2

2s
− Gs(ξ) with ξ = sH . By O(N) symmetry we can write

Gs(ξ) = Vs(ζ ) with ζ = ξ 2/2. The structure of (6) is

Gs(ξ) = − ln(μs ∗ e−G0)(ξ) (7)

where ∗ denotes convolution and μs is the Gaussian measure with covariance s (the integral
exists by the above-mentioned properties of G0). For s → 0, μs tends to a Dirac measure,
so the convolution gives e−G0 in that limit. The convolution with a Gaussian measure is a
standard example of a smoothing operator [19], so this already implies that in spite of the
singularities in derivatives of G0, μs ∗ e−G0 is smooth, even analytic in φ for any s > 0. This
can be seen explicitly from (μs ∗ f )(ξ) = ∫

f (x) dμs(x − ξ), and understood in a physical
analogy by noting that the RG flow defined in (6) is a heat flow with time parameter s, whose
solution is smooth for any positive time s > 0.

Therefore, we can avoid the singular initial condition altogether by using the semigroup
property [5] of Gaussian integration: let ε > 0, then for all s > ε

Gs(ξ) = − ln(μs−ε ∗ e−Gε )(ξ). (8)

Or in terms of the unamputated connected functions with a shifted scale

Ws(Gε,H) = Ws+ε

(
G0,

s

s + ε
H

)
+

H 2

2

sε

s + ε
, (9)

for all s > 0, i.e.

Ws(Gε,H) = ln
∫

dNφ

(2πs)N/2
exp

[
−φ2

2s
− Gε(φ) + (φ,H)

]
. (10)

We find lims→∞(Ws(Gε,H) − Ws(G0,H)) = ε H 2

2 , that is, the functions Ws(G0,H) and
Ws(Gε,H) coincide in the limit s → ∞ up to an explicit term. The RG flow of the (modified)
Legendre transform remains unchanged but the advantage now is that the initial condition of
equation (5) is given by Gε(φ) = Vε(ρ), which is smooth. In the remainder of this section
we compute Vε and give bounds on its derivatives. V ′

ε has no logarithmic divergence in φ for
arbitrarily small ε > 0, and it provides a well-defined starting point for integrating (5).

To begin, we collect some properties of V0 that follow from (3) and the assumptions on
the remainder term R stated there, namely that, loosely speaking, the behavior of V0 is that of
v1ρ ln ρ for small ρ. By our assumptions and integration in ρ:

|R′′(ρ)| � K0

ρα
, |R′(ρ)| � K0

1 − α
ρ1−α, |R(ρ)| � K0

1 − α
ρ2−α (11)

with α < 1. It follows immediately that

|V ′
0(ρ) − v1 ln ρ| � v1 + |v2| +

K0

1 − α
ρ1−α, (12)

which is much smaller than |v1 ln ρ| for small enough ρ, and∣∣∣∣V ′′
0 (ρ) − v1

ρ

∣∣∣∣ � K0

ρα
(13)

which is again much smaller than v1
ρ

for small enough ρ because α < 1. The properties
of ρ �→ v1 ln ρ and an easy approximation argument then imply that there is an interval

5
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(0, 2ρ0] on which the derivative V ′
0 of the initial potential is negative, the map ρ → |V ′

0(ρ)|
is decreasing and the maps ρ → ρ|V ′

0(ρ)|k , k = 1, 2, are increasing. Moreover, on this
interval |V ′′

0 (ρ)| � c′′
ρ

where c′′ is a constant. In particular we can choose ε so small that
ε|V ′

0(ε)| < 0.1. For reasons of brevity, we do not give the detailed values of the constants as
functions of v1, v2,K0 and α here.

We split the analysis of Gε in two cases distinguished by the value of ζ = ξ 2

2 .

Case 1: ζ � ε 
 1. We change integration variables to φ̂ = (φ + ξ)/
√

ε, subtract V0(0) in the

exponential and expand the exponential of V0(0) − V0(ρ̂ε), where ρ̂ = φ̂2

2 . Then perturbation
theory for small ε yields

e−Gε(ξ) = e−V0(0)
[
1 − ε(v1 ln ε + v2)

1
2 (N + J 2) + εv1T (J ) + O((ε ln ε)2)

]
, (14)

where J = H
√

ε = ξ√
ε

∈ [0,
√

2] and

T (J ) = e− J2

2

∫
dNφ

(2π)N/2
ρ ln ρ e− φ2

2 +φJ = T̃

(
J 2

2

)
. (15)

The function T (J ) and all its derivatives with respect to J are bounded on the interval
J ∈ [0,

√
2]. Likewise the higher order terms and their derivatives with respect to J can be

estimated. That is, although ε can be arbitrarily small, Vε contains no logarithms of the field
anymore. Additionally we obtain for the derivatives

V ′
ε(ζ ) = v1 ln ε + v2 + v1T̃

′
(

ζ

ε

)
+ O(ε(ln ε)2)

V ′′
ε (ζ ) = v1

ε
T̃ ′′

(
ζ

ε

)
+ O((ln ε)2).

(16)

Case 2: ε < ζ � ρ0. We perform the integral (6) by the saddle point method (because we are
analyzing Gs for s = ε, s is substituted by ε in (6)). The stationarity condition for the negative
exponent S(φ) = (φ−ξ)2

2ε
+ V0

(
φ2

2

)
in the integrand of equation (6) is

∂S

∂φi

= 1

ε

[
φi

(
1 + εV ′

0

(
φ2

2

))
− ξi

]
= 0 (17)

for all i. We first assume that there is a stationary point φ∗ and denote ρ∗ = (φ∗)2/2. Then
(17) implies

(φ∗ − ξ)2 = 2ε2ρ∗V ′
0(ρ

∗)2 (18)

and

ρ∗(1 + εV ′
0(ρ

∗))2 = ζ. (19)

The left-hand side of (19) is monotonically increasing in ρ∗ ∈ [ε, 2ρ0] by our hypotheses on
the potential V0. Thus, a unique solution ρ∗ ∈ [ζ, 2ζ ] of (19) exists. There is no solution
in the interval [0, ε] since ζ > ε. For larger fields there is no solution since V ′

0(ρ) becomes
positive eventually, so that equation (19) would imply ρ∗ < ζ � ρ0, and because ε is small.
Given ρ∗, the unique solution of (17) is, by O(N) invariance of V0, φ∗ = √

2ρ∗ ξ

|ξ | . Thus, S
has a single stationary point. By (19), and because V ′

0(ρ
∗) < 0,

0 � ρ∗ − ζ � ρ∗(2ε|V ′
0(ρ

∗)| + ε2V ′
0(ρ

∗)2). (20)

Because |V ′
0| is decreasing and ρ∗ � ζ � ε, this implies

0 � ρ∗ − ζ � ρ∗η (2 + η) � 3ρ∗η (21)

6
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with η = ε|V ′
0(ε)|, hence

ζ � ρ∗ � ζ

1 − 3η
. (22)

We thus have the estimate

|V ′
0(ρ

∗) − V ′
0(ζ )| � (ρ∗ − ζ ) sup

r∈[ζ,ρ∗]
|V ′′

0 (r)|

� (ρ∗ − ζ )
c′′

ζ
� (ρ∗ − ζ )

c′′

ρ∗(1 − 3η)

� c′′ 3η

1 − 3η
. (23)

These bounds imply that all eigenvalues of the Hessian

Hij = ∂2S

∂φi∂φj

= 1

ε
δij (1 + εV ′

0(ρ)) + φiφjV
′′

0 (ρ) (24)

are positive and of order ε−1 at φ∗. Thus, φ∗ is the unique minimum of S and a standard saddle
point analysis [20] applies: all contributions from φ not in a neighborhood of the minimum
are suppressed exponentially for small ε, as are the corrections to the Gaussian integral around
the saddle point. The Gaussian integral around the saddle point gives (2π)N/2D−1/2, where
D = det H . It gives only subleading contributions since the factor εN/2 in D−1/2 is canceled
by the normalization factor s−N/2 = ε−N/2 of equation (6). Therefore, in case 2

Vε(ζ ) = V0(ζ ) + O(ε)

V ′
ε(ζ ) = V ′

0(ζ ) + O(ε ln ε)

ζV ′′
ε (ζ ) = O(1).

(25)

Combining equations (16) and (25) from the two cases, we find that in Vε(ζ ) the logarithm of
the field ζ is replaced by the logarithm of max{ε, ζ }. Therefore, the RG flow starting at s = ε,
and with initial condition �ε = Vε, is well defined.

As we have just shown, perturbation theory for small ζ < ε allows us to calculate Vε

to arbitrary precision. This result can easily be extended to non-reduced models because, in
general, the regularization cε provides an infrared regularization, which justifes perturbation
theory for small enough ε. For reasons of brevity, we have only outlined the saddle point
argument that estimates the difference of Vε and V0 for ζ > ε. This argument can easily
be made into a proof, and it also extends to the non-reduced situation, again by noting that
the infrared regularization together with the smallness of ε provides rigorous control over the
saddle point expansion.

3. The RG differential equation at small s and φ

Shifting the initial condition of the flow as described in the last section is an exact procedure
and approximations become necessary only for the calculation of the new initial condition (at
least for non-reduced models). But the question remains whether one can find a less indirect
way of showing that the RG equation (5) for the local potential Us is well defined at all s > 0
if the initial potential contains logarithmic terms. In this section we study the asymptotic
solution of the RG equation for small RG scales s and small field squares ρ = 1

2φ2. As
explained below, the argument is not solely based on (5), but requires the bounds derived in
the last section as an a priori input.

7



J. Phys. A: Math. Theor. 42 (2009) 475401 C Husemann and M Salmhofer

In a first step, we assume that the denominators and also ρU ′′
s in equation (5) do not

contribute to the leading asymptotic solution. Then the flow equation becomes a partial wave
equation U̇s(ρ) = N

2 U ′
s(ρ), which is solved by the backward propagating wave

Us(ρ) = U0

(
ρ +

N

2
s

)
. (26)

If equation (26) also provided the asymptotic behavior for the derivatives with respect to s and
ρ, we could easily justify the assumptions we just made: the denominators for small ρ and s
contribute only to order O(s ln s), and ρU ′′

s is bounded by a constant for small ρ. However,
asymptotic expressions cannot simply be differentiated; hence, regularity of the derivatives of
the local potential cannot be assured by this argument. The natural procedure starting from
the RG equation would now be to differentiate equation (5) with respect to ρ. This allows to
determine the asymptotic solution and to verify the above assumption for U ′

s , provided that
a regularity assumption is made on U ′′

s . Another differentiation allows us to do the same for
U ′′

s , given a suitable hypothesis on U ′′′
s , and so on. To avoid an infinite proliferation, it suffices

to have a priori bounds for U ′
s(ρ) and ρU ′′

s (ρ) for small s and ρ. We have already derived
such bounds directly from the functional integral in the previous section, and use them now to
prove the asymptotic correctness of (26).

For the Legendre transformation of Ws we denote the inverse of the maps ∂Ws

∂Hi
(H) �→ φi by

H̃ i(φ) = ∂�s

∂φi
+ φi

s
. Using Ws(H) = ζ

s
−Vs(ζ ) we find the connection between the derivatives

of the effective action Vs(ζ ) and the local potential Us(ρ):

U ′
s(ρ) = V ′

s (ζ̃ (ρ))

1 − sV ′
s (ζ̃ (ρ))

, (27)

where ζ̃ (ρ) = s2 H̃ (φ)2

2 is determined by ζ̃ (ρ) = ρ/[1 − sV ′
s (ζ̃ (ρ))]2. Combining the estimates

of V ′
s (ζ ) obtained in equations (16) and (25) we arrive at the estimate |V ′

s (ζ )| � c ln(max{s, ζ })
for small s and ζ and a constant c ∈ R. Using equation (27) this gives |U ′

s(ρ)| � c ln s

with another constant c. Similarly, |V ′′
s (ζ )| � c(max{ζ, s})−1 implies |U ′′

s (ρ)| � cρ−1

asymptotically for small ρ and s. Therefore, equation (26) is the asymptotic solution of the
RG equation.

4. Conclusion

We have shown that it is possible to apply the functional RG to initial conditions given
by potentials with a logarithmic singularity in their second field derivative, because the RG
flow smoothes out these logarithms sufficiently fast. One might think that a rapid change of
the effective local potential near the singularity might cause numerical difficulties, but our
arguments also provide a method to calculate the flow at small s efficiently and with arbitrary
precision.

We have restricted our analysis to reduced models to bring out the main points in a simple
way, but it can be generalized to include the second order of a derivative expansion. For
example, the Z0 and Y0 functions (see [4] for standard notation) diverge with ρ−1 and ρ−2

respectively for the BCS model. As shown here for the local potential, regularized functions Zε

and Yε can be obtained by a derivative expansion of the effective action at scale ε. Moreover,
as explained above, the smoothing argument is completely general, that is, it can be used to
prove a similar statement to the full theory.

As already remarked in the beginning, potentials with singularities are not academic
examples, but arise in important physical situations and have important effects. The results
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described here will therefore be useful in going beyond φ4-type approximations of these
potentials, to obtain a more quantitative theory.

A natural question is whether our analysis also applies to more singular initial conditions.
It is straightforward to extend our proofs to potentials V0 whose derivative diverges as a power
of log ρ for ρ → 0. This case includes, in particular, a (log ρ)2 singularity, which occurs in the
study of superconductivity of two-dimensional Fermi systems with Van Hove singularities.

We acknowledge financial support from DFG research unit FOR 723.
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